
The challenges of Software Engineering Education
Carlo Ghezzi

Dipartimento di Elettronica e Informazione
Politecnico di Milano

Piazza L. da Vinci, 32, Milano, I-20133, Italy
carlo.ghezzi@polimi.it

Dino Mandrioli
Dipartimento di Elettronica e Informazione

Politecnico di Milano
Piazza L. da Vinci, 32, Milano, I-20133, Italy

dino.mandrioli@polimi.it

ABSTRACT
We discuss the technical skills that a software engineer should
possess. We take the viewpoint of a school of engineering and put
the software engineer's education in the wider context of
engineering education. We stress both the common aspects that
crosscut all engineering fields and the specific issues that pertain
to software engineering. We believe that even in a continuously
evolving field like software, education should provide strong and
stable foundations based on mathematics and science, emphasize
the engineering principles, and recognize the stable and long-
lasting design concepts. Even though the more mundane
technological solutions cannot be ignored, the students should be
equipped with skills that allow them to understand and dominate
the evolution of technology.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:

Keywords
Engineering, software engineering, education, models.

1. INTRODUCTION
We discuss the technical skills that a software engineer should
possess. Rather than focusing on the organization of a course (or
set of courses) titled “software engineering”, we take the global
viewpoint of a school of engineering and put the software
engineer's education in the wider context of engineering
education. We believe that software engineering (SE) should be
viewed as an engineering discipline, and that a software engineer
should be viewed as primarily an engineer. On these grounds, we
analyze the principles and practices that pertain to the engineering
culture and also what is special in the case of software
engineering.
We emphasize that in general no engineering artifact involves the
knowledge of a single discipline; thus, engineering disciplines
cannot be taught in isolation but their essentials must be mastered
by any engineer, independently of his/her particular field.
Another main issue that we face in engineering is learning by
studying (at school) vs. learning by doing (at work) [1]. Our
strong belief is that the two ways of learning are necessarily
different and complementary. It would be a mistake to try to fake
learning by doing at school, and it is almost impossible to resume
the typical “learning in class and through textbooks” during
everyday’s work. However, it would be a fatal mistake to adopt
the idea that the two worlds should ignore—or even disparage—
each other. Learning at school should equip the students with all
the fundamental skills that will enable them to proceed to lifelong
learning at work.

In a continuously and rapidly evolving field like software,
education should emphasize principles and recognize what are the
stable and long-lasting concepts of the discipline. Even though the
more mundane aspects of the state-of-practice (technology, tools,
methods) cannot be ignored, the students should be equipped with
skills that allow them to understand and dominate the various
technological waves without being overwhelmed by them and
thus avoiding the danger of rapid obsolescence.

In the following sections of this paper we explain in some detail
why we believe in this approach and how it should be exploited in
the organization of an engineering curriculum. The focus is
obviously on teaching software engineering, but always keeping
in mind that the software engineer's education is part of a wider
process aimed at “forging an engineer”.

Section 2 examines the fundamental skills of a software engineer,
showing that they are shared by any engineer, but also pointing
out important differences, which might generate challenges
peculiar to the teaching of software engineering. Section 3
discusses how software engineering should be taught within
university curricula. Section 4 focuses on “putting software
engineering in context”. Finally Section 5 draws some
conclusions.

2. KNOWLEDGE AND SKILLS OF A
(SOFTWARE) ENGINEER
Like any other engineer, the software engineer must master

• the theoretical foundations of the discipline;
• the design methods of the discipline;
• the technology and tools of the discipline.

In addition, he/she has to be able to

• keep his/her knowledge current with respect to the new
approaches and technologies;

• interact with other people (often not from the same culture);
• understand, model, formalize, analyze a new problem;
• recognize a recurring problem, and reuse or adapt known

solutions;
• manage a process and coordinate the work of different

people;
• …

The above list, far from being exhaustive, is however sufficient to
enlighten both the differences between learning by studying and
learning by doing and the differences between learning these skills
in software engineering and in other fields of engineering.
At the two extremes, certainly learning the theoretical foundations
of a discipline is a typical school activity whereas much of
managing a process and the psychology of interacting with
people—whether one’s manager, peer, employee, or customer—
can be learned mostly through experience in the filed and exhibits

often sharply different requirements depending on the peculiar
environment.
On the other hand, none of these skills—not even the above two
extremes—should be learned exclusively in one way. Consider,
for instance, the typical case of learning programming languages:
some languages must be learnt in depth at school, but new ones
will certainly appear and will have to be mastered at work.
Therefore, teaching at school should focus on two related
fundamental issues: how to apply good programming methods in
any language, and how to understand the principles of
programming languages. Such principles as program design via
abstractions, modularization, decoupling, documentation apply to
any programming language. Furthermore, a student who
understands type systems, binding mechanisms, scope rules,
runtime memory management, and other similar concepts, can
more easily learn any new language and its specific subtle
semantic features. It would be wrong to expose students to a
plethora of different languages, "because they have to know all
the possible tools they will encounter in practice". The other
extreme, is exemplified by Dijkstra [2], who claims that initially
students should learn only mathematical languages without
running their programs on real computers. This, however, is
equally counterproductive, and can mark a chasm between
university and “the real world”.
As another example, teamwork should be experimented in school
project works. It is important that students, before they move to
work, appreciate the need for scheduling their work with others in
a team, negotiate requirements and specifications for the parts
they are responsible of, etc.
In summary, learning at school should lay the foundations for all
the skills we listed at the beginning of this section. The students
should be mentored to learning most of what they will need to
continue to learn after leave school, as part of their lifelong
learning activity.
It is important to acknowledge that software engineering differs
from the other more traditional fields of engineering in several
specific points. These differences affect how is should be taught.
Let us examine some typical cases.

• Theoretical foundations are less mature, often “far” from being
directly applicable, and hence less immediately useful.
This is at least a common feeling among practitioners, perhaps
shared even by several academics. At a deeper insight, however,
we could argue that, for instance, the difference between a
Turing machine and a real computer is not greater than the
difference between the notion of material particle (a body with a
mass but no volume) and a real physical object such as a car, an
aircraft, a fly, etc. or the difference between the notion of a
“perfect gas” and the air of our atmosphere. The study of these
abstract notions, however, is viewed in traditional engineering
as foundational starting point that should be part of the
engineer's education, whereas theoretical computer science is
often neglected in the software engineer's education. We must
acknowledge, however, that the models used in traditional
engineering are more directly applicable, and hence more
widely used by practitioners. As an example, consider how
widely applicable Fourier transforms are in signal processing
and in other fields of electronics.

• Well-established models and notations are still lacking.
This point can be seen as the counterpart of the previous. Here
too a striking example is provided by programming languages:

it is somewhat astonishing that this field, which should be one
of the most mature of computer science, still produces major
novelties almost every year. It is even more surprising that these
changes have an immediate impact on even lower-level
(undergraduate or earlier) education. Conversely, introductory
courses on physics still teach classical mechanics as it was
taught decades ago. They would never try to incorporate new
parts to teach quantum mechanics and relativity theory to
freshmen.
The situation is even more striking if we move to such aspects
as requirements analysis, specification and architectural design,
where the state of practice is still largely ad hoc, and methods,
notations and tools are still largely ignored in the industrial
world.
The states of the art and practice, however, are evolving. The
standardization and the increasingly wider adoption of UML
have a positive impact on bridging several gaps. Not only UML
has been a vehicle—certainly not perfect, but useful—to
transfer some research results into the industrial world. But also
it is an example of a notation originated in the field of computer
science that is now recognized and adopted even in other fields
of engineering. For example, it has been applied in logistics and
in industrial manufacturing. This is not the only example of a
technology that originated in our field and later was imported by
other engineering fields. For example, control engineers now
use automata-based discrete events models (e.g. Petri nets)
along with their original continuous process models. We will
come back to this issue in the following.

• The distinction between the essential and the accidental
 complexity of software [3] is crucial.
This is the essence of engineering. When solving a problem, the
engineer must neglect irrelevant details to focus on the
essentials, otherwise he or she would be lost in an
unmanageable complexity. The ability to separate concerns and
focus on the relevant ones at each time is crucial for the
engineer. This is quite different from the way mathematicians
work. A mathematician works in a formalized world and mostly
cares about precision of solutions. The hard question, of course,
is what, how and when something can be considered to be a
detail that can be neglected and what, how and when should one
instead add more detail to achieve better modeling and analysis.
The answer is difficult and context-dependent in most cases:
one aspect could be irrelevant from some viewpoint and at some
phase of the development, whereas it could be crucial in other
phases.
For example, in programming it is often useful to concentrate
first on writing a correct program, ignoring such issues as
performance and usability. These can be taken into account at a
later point via correctness-preserving code transformations and
by improving user interfaces.
Other fields of engineering have some well-established
guidelines to apply such difficult choices. In most cases they are
rooted in the metrics of the adopted mathematical models:
“neglect quantity X—say a current in an electric circuit—with
respect to quantity Y if they differ of orders of magnitude”.
Metrics, and consequently any notion of continuity are lacking
or highly controversial in most computer science models. Thus,
the software engineer must often resort to more generic
principles such as the separation of concerns to decide about
what to focus on.

• Mastering different approaches to manage project complexity.
The complexity of different software engineering projects, the
diversity of application areas, and the lack of established
common foundations makes it likely that the software engineer
should master different methods and approaches and should be
capable of choosing the best method and approach that fits the
problem at hand. For example, the development process can
follow a highly structured, top-down scheme (like in a waterfall
lifecycle) or a flexible and iterative scheme (like in extreme
programming). The process to choose depends on the size of the
project, its criticality, the relationship with the customer, the
stability of requirements, and so on. As another example, when
a system is to be specified, different notations can be used
according to the stakeholder's viewpoint. There is no universal
process model and there is no universal notation. The engineer
has to learn which to use, when, and why, depending on the
problem at hand.
Any engineer should own such a skill. However, the principles
and, mainly, the techniques to confront with the various
problems are much more established and less subject to fashion
and “buzzwording” in traditional engineering than in software
engineering. Examples can be easily found in the evolution from
structured analysis/design, to object-orientation, to extreme and
agile programming, etc. In parallel, and often in contrast,
academia has been advertising for a long time formal methods,
but those too have been subject to a rather uncontrolled and
unpredictable evolution (thousands of abstract machines; logic,
algebraic, and attempts to apply category-theory based
approaches) . It is certainly hard not to get lost in such a mess of
more or less “revolutionary solutions”. And it is hard to discern
substance from pure cosmetics.

1

• More emphasis is needed on interdisciplinary culture and
communication skills.
This is due to the very nature of software applications. In most
of them the software is the “intelligent glue” that integrates a
complex heterogeneous system: examples go from embedded
systems to industrial automation systems, to office automation,
to virtual reality, etc. The software engineer, therefore, even
more than others, must be able to understand problems and
models not coming from his or her field and to interact with
their specialists (of course, he will not replace the application
domain specialist, nor will she have to gain the same depth and
breadth of knowledge in their field).
The above remarks, therefore, can suggest that, and explain
why, the gap between learning by studying vs. learning by doing
is deeper in software engineering than in other cases. Perhaps a
consequence of this situation is that textbooks and courseware
that aim at teaching practice are often wordy, purely descriptive,
and overly informal. At the same time, textbooks and
courseware that teach mostly theory are often unrealistic, only
deal with toy examples, are not well understood and not well
accepted by students (and instructors).

In summary, the widely practiced attitude of comparing software
engineering with more traditional fields is still valid and thought
provoking. It still shows important differences besides common
needs and approaches. It also shows that often the younger
discipline should strive to get closer to the better-established ones,

1 This is another example of the big gap between learning (and
teaching) at school and learning (and teaching) at work.

but sometimes even the converse can produce important progress.
Fortunately, much has been achieved since the birth of software
engineering. But there is still a long way to go.
We wish that some of the recommendations that will be the object
of the next sections could and should be addressed not only in
organizing the teaching of software engineering but could also be
taken into consideration, more generally, in engineering
education.

3. CONSEQUENCES ON (SOFTWARE)
ENGINEERING EDUCATION
In this section we articulate some general guidelines, derived from
the analysis of previous section, on teaching software engineering
as an engineering discipline [5].

• Focus on lasting principles rather than last-minute fashionable
technologies and buzzwords[6], [7].
This can be harder for software engineering than for other
engineering fields because, as we discussed in Section 2,
principles and theory may not be directly applicable, i.e., they
do not yield normative practical techniques. Yet students should
be motivated to learning them because they shape their
mentality and make their approach to solving practical problems
more mature and systematic. Because the recognition of the
value of principles may come only later, even after years of
experience, some “faith and trust” is needed from the students .
Furthermore, technology is evolving faster and often it is hard to
distinguish between hypes and real new good approaches.

2

• Integrate class teaching with projects.
This is a very critical issue in software engineering education.
On the one hand, just studying principles on textbooks and even
doing clever and insightful exercises is not real “learning”
without a practical experience. On the other hand, mimicking
the complexity of real-life projects in an educational
environment can be impossible. Thus we need to find innovative
ways of integrating project work in curricula (see, for example,
[1] and [4]). We argue that projects should be realistic, but
students should be aware of the differences with the real life, in
terms of team size, duration and man power needed to carry
over the project, requirements for compatibility with legacy
systems, unavailability of “real” stakeholders, etc. At the same
time, project work should exploit the opportunities (research
methods, prototyping, …) that often are unavailable in the
industrial world. Students may turn out to be carriers of
innovation when they enter the business world.

• Try to make things easy and understandable.
Stated in this way, such a recommendation may even sound
obvious. How to achieve this goal, however, is far from trivial
and involves conflicts. Indeed, many details should be
abstracted away to make problems manageable within the
typical terms of a university course and to help focusing

2 It is not uncommon experience for us teachers to receive “post

factum” recognition from former students with sentences such
as “When I attended your course I hated topic xx. Also, as soon
as I have been hired in my first company I was shocked by
doing things that seemingly had nothing to do with what I
learned at school. But now, after several years of practical work
I understand and appreciate the value and usefulness of that
teaching.”

attention on the core of the problem, possibly one issue at a
time. This may lead to class examples and exercises deal with
“toy problems”, a term that is often used in a derogatory sense,
to mean unrealistic and ultimately useless or even misleading.
We claim instead that toy problems may be quite insightful if
well chosen; the literature is now rich of successful examples
often carved from real-life problems but “cleaned up” from
irrelevant and distracting details.
As a side remark, one might wonder why, in general, toy
problems adopted in other fields such as mechanics are better
accepted by students than in software engineering. For instance,
why an exercise that asks for computing the trajectory of a
missile suggesting to consider the missile as a material particle
is appreciated and well accepted, whereas the classical dining
philosophers problem is often disparaged as a “toy problem”—
not only by students? Perhaps the answer to such a question is
more of a psychological than of a technical nature.

• Teach how to select and evaluate different methods and
approaches rather than follow them like recipes.
Often methods force a normative behavior, but their application
must be preceded by a careful and scholarly analysis of
competitive approaches, a rigorous evaluation of the trade-offs
and costs and benefits. As opposed to more traditional fields of
engineering, software engineering has only a limited availability
of ready-made normative methods that are scientifically
supported. The ability to perform cost/benefit analysis, however,
is a general skill that is typical and common to all areas of
engineering.
Here again we see how learning by studying and learning by
doing should complement each other, the latter building on the
foundations laid by the former. The teacher and the student
should insist on a critical and comparative attitude; the teacher
should encourage the student to experiment, to question claims
given for granted in the literature, in order to come to her own
opinions and decisions. The junior software engineer probably
will not have so much freedom in making choices and will have
to accept and comply with company-wide decisions made by
someone else, maybe even long time before he or she has been
hired. Nevertheless the engineer will certainly better exploit the
company’s methods if previously trained to apply a critical—yet
constructive—attitude. The senior software engineer or the
manager, instead, will have to choose a project’s or even the
company’s new standards, and in this case he or she will have to
be critical, comparative, and open to evaluating novelties by
distinguishing the real progress from rubbish.

4. SOFTWARE ENGINEERING IN
CONTEXT: REQUIREMENTS ON
CURRICULA
Engineering is seldom highly specialized and narrowly focused. In
most cases it deals with systems, often involving heterogeneous
and interdisciplinary aspects; this is even more true in the case of
software engineering. The ultimate purpose of software, in fact, is
to allow computer-based systems to interact with their external
environment, to control it, automate functionality, or provide
service. The external environment may be the physical world of a
controlled chemical plant or an intensive-care unit in a hospital.
Or it may be the organizational world of a business unit to be
supported in their sale operations; or a set of players who are
competing in some Internet-based game.

Although a software engineer cannot be an expert in every
physical domain, he or she must be able to interact with experts
from those domains. Thus, software engineering cannot be taught
in isolation. It must be put in context—how broad is an open issue.
We can categorize the context of software engineering as follows:
Mathematical background
This is a controversial issue although there is a general consensus
that mathematics provides the fundamental background for every
engineer. It is also true, however, that the gap between
mathematical foundations and engineering applications is wider
and less understood in software engineering.
It is often claimed that traditional engineering needs continuous
mathematics whereas software engineering needs discrete
mathematics. We think that such a view is fairly narrow-focused
and misses the real relationship between engineering and
mathematics. We claim, on the contrary, that any engineer, not
only a software engineer, must have a solid background in all
fundamental areas of mathematics:

• traditional continuous mathematics (differential and
integral analysis and calculus); 3

• discrete mathematics (logic, combinatorics, algebra;
more generally, “non-continuous mathematics”);

• statistics and probability theory.
There are many strong reasons to support our view.
First of all mathematics fosters rigorous reasoning. Each branch of
mathematics, however, exhibits some specific forms of “building
its own truths” which, all together, provide a formidable
background for solid reasoning. Continuous mathematics stresses
the unavoidability of errors but provides the ways to make them
small enough so that they become tolerable. Combinatorics
teaches how to “count” the members of a class of various
elements and how to “arrange them according to some rule”.
Mathematical logic teaches how to build new truths from
elementary ones and how to check whether a claim is true or false.
Algebra teaches how to abstract and generalize particular cases
into wider categories; Statistics and probability theory teach—
among other technical skills—how to build reliable information
on the basis of uncertain or variable data. All these skills should
be part of the foundational tools of any engineer!
We should also be careful and flexible when we judge the
"usefulness" of mathematics in terms of direct practical
application. It is certainly true that many software engineers will
never have to solve a differential equation. However, teaching
only the mathematics that can be directly applied now, would be
the same mistake as—say—teaching only the last minute
middleware technology instead of the lasting principles of
software construction. We simply cannot foresee what will be
directly applied of what we are learning now; on the contrary we
should be ready to learn, master, and apply some new technical
and mathematical machinery whenever needed. The need for
introducing some metrics in a new “domain of knowledge” and,
consequently, the need to “make a distance as small as possible",

3 Notice that we used both terms analysis and calculus: the former

emphasizes reasoning and understanding mathematical
definitions and properties; the latter focuses on building
algorithms to solve practical problems once they have been
formalized through suitable equations and a conceptual solution
has been proved by some theorem.

which leads to the abstraction of a "continuous domain" and the
concept of limit, may arise for the software engineer in several,
often unpredictable, circumstances. For instance recent techniques
in the security domain (e.g., SPAM filtering, misuse and anomaly
detection) are based on some metrics defined on the message
flows and identifying some threshold to separate the “good ones
from the bad ones”. Applications of continuous mathematics can
also be found in other areas, such as learning algorithms or
performance modeling and analysis.
Examples that show the need for software engineers to have a
solid background in statistics and probability theory include
software reliability modeling [8] and experimental methods
applied to evaluating software quality, testing, and other empirical
approaches.
We do not claim that any engineer must have the same strong
background in all types of mathematics—it would be enormous
and unmanageable. The relative balance between the various
branches of mathematics can vary among the various fields of
engineering. Also, advanced studies in some fields of engineering
can require going in depth into fairly sophisticated mathematical
technicalities. However, the fundamental background should be
based on a wide range of mathematical fields.
Last, but certainly not least, the already emphasized need for the
software engineer to interact with people with a different cultural
background requires the ability to “find a common language” with
them. This certainly applies to the mathematical part of the
language, although it has even more important implications that
will be discussed later.
The core of computing science
This is certainly the least controversial part, at least in its
essentials. There is no doubt that topics such as programming and
programming languages, computer architecture, operating
systems, databases, networking, computation and complexity
theory, etc. are an essential part of the culture of any software
engineer.
Rather, there could be some discussion on the borderline between
what is considered to be the core of computing science and what
instead more properly belongs to software engineering [9]. As an
example, does object-oriented programming belong to the basics
or is it part of software engineering? What about testing?
Certainly, one should learn some basics of testing even in
introductory courses, but most testing methodologies belong to the
more complex world of software engineering. Software processes
and their management also share many organizational aspects
with other disciplines: this is in fact another example of strong
intersections, but also of striking differences, between software
and other engineering disciplines. On the one hand, it is clear that
in both cases we deal with the problem of organizing, managing,
coordinating, and monitoring the work of several people; on the
other side the human intensive distinguishing features of software
production makes it much less predictable than, say, organizing
the construction of a dam.
However, stating a precise borderline between the core of
software engineering and its computing and organizational context
is not such a big issue, once the important topics are well taught in
a well planned and well coordinated curriculum.
The essentials of the “physical world”
Software intensive systems do not exist in isolation. They are built
to be part of a wider and more general environment. Any

(software) engineer should possess the necessary background to
understand such a global environment. This includes:

• Mechanics, thermodynamics, electricity, etc.
• The technology on which computing science and

engineering is built: electronics, telecommunications, …
• The “social physical world”: economics, business

organizations, communication, management, etc.
To some extent most of these disciplines are part of many
computing curricula. However, their role, impact, and relative
weight within curricula are highly controversial. Without going
into a questionable quantitative evaluation, we claim that most
often the teaching of the above topics is too superficial and
descriptive. An even precise and accurate description of the
physical phenomena is not enough to make their concepts and
principles real engineering tools. Instead the typical engineering
attitude that consists of

• observing a—not necessarily physical!—phenomenon,

• building a model of it,

• reasoning on it, both qualitatively and quantitatively,
with the help of the model

should be emphasized and exemplified in some depth within the
context of all these disciplines. We see several good reasons to do
so, even sacrificing overspecialization in elective fields.
First, note that basic engineering principles—such as
modularization, abstraction, modeling, verification, etc.—are
quite general, and crosscut all engineering fields. They should be
used systematically not only in teaching computing science topics,
but also teaching “the essentials of the physical world”. For
example, one could stress the analogy between considering a
component of an electric circuit as a black-box, of which only the
external behavior is known, and the principle of information
hiding, through a clear separation between module interface and
its implementation.
Also, a broad culture helps reasoning by analogy and therefore
fosters reuse. The ability of reusing any type of knowledge has
been listed above as a major skill for the software engineer.
Once again, the need for the software engineer to interact with
people with a different culture imposes the ability to understand
and to master at a basic level their own models.
Let us also point out that here we are referring to the activity of
formally reasoning on models of the real world. Such a real world
is not exclusively the world of physical objects (plants, cars,
aircrafts, etc.) but also the world of human organizations (banks,
agencies, offices, hospitals, even courts of justice, etc.). These
entities too have to be abstracted into a suitable formal model in
order to be managed with the aid of software, which is formal by
its very nature. This is not to say, however, that the activity of an
engineer must be based exclusively on formal and mathematical
reasoning on abstract models. Experience, common sense,
intuition, … are fundamental tools of the engineer as well as of
most other professionals. These skills, however, are acquired as a
result of experience in the real world, rather than being learned by
studying at school.
We would like to conclude this section by insisting that it is not
only true that software engineering has to “learn” from traditional
engineering, but also the converse is true. Software engineers
cannot ignore continuous mathematics, but civil engineers,
industrial engineers etc. cannot ignore discrete mathematics and

logic. The software engineer cannot be an expert in mechanics or
thermodynamics, but rather should possess the basic knowledge
that would allow him or her to interact with the specialists in these
fields, should the need arise in acquiring requirements for a new
application. Similarly, the mechanical engineer should be able to
communicate with the software engineer who is designing the
software embedded in the cruise control of a new vehicle,
understanding the feasibility of certain real-time functionality. No
engineer can ignore the basics of computer science, nor how
software, which permeates practically all projects, is organized,
documented and built: poor quality software can hamper a global
system no matter how fine and sophisticated are other
components. Notice that by “the basics of computer science” we
do not mean how to use the Internet, productivity tools or, in
general, computer tools, but the principles of computing science.
Cross-fertilization with other engineering fields is needed, in both
directions; no matter how focused the curricula in the various
fields are.

5. CONCLUSIONS
In this paper we presented our viewpoint on the challenges of
teaching software engineering. We restricted our discussion to
teaching within university education, ignoring the important areas
of continuous education, special purpose intensive courses, and
material mostly devoted to professionals. Rather than addressing
what to teach in a software engineering class, we focused our
attention on how to organize a curriculum for a software engineer
and how to put it in the proper context.
We based our analysis on the unavoidable and complementary
differences between learning by studying and learning by doing
[1] and on the comparison between software engineering and
other fields of engineering.
We concluded that a major challenge for the software engineering
education comes from a deeper gap that exists between the two
forms of learning than it happens in other, better established
engineering fields. We analyzed the technical and “social” reasons
of such a circumstance and suggested a few remedies (no “silver
bullets”, of course!). We also pointed out that the state of the
affairs is evolving in a positive direction.
We strongly believe that, by its very nature, software engineering
cannot be taught in isolation but must be put in the proper context.
This is true for practically all branches of engineering, since most
of the engineering tasks have to do with designing, building, and
managing of systems that are quite heterogeneous in nature.
This remark broadens the scope of the challenge, because it leads
to the question of what should be the foundations and the basic
principles of engineering education, not just software engineering.
At the beginning of engineering as a systematic discipline, it was
fairly natural to define the core knowledge of any engineer. The
continuous advances in science and technology inevitably led to a
high level of specialization. For instance, presently our Technical
University offers an order of 500 different courses for
approximately 20 curricula that provide a degree in engineering.
The mere proliferation of courses without caring about cohesion
of the underlying foundations may lead to disasters.
We claim that the more the specialized culture and technology
advance, the more education should strive to build a solid

common mentality and culture that must serve as a foundation on
top of which the special knowledge of a peculiar branch should be
rooted and integrated with its context. The definition of such a
common basis, however, should not be equated with keeping the
same subjects that were taught for decades, before computing
entered the engineering scene. Moreover, the common basis is not
so much defined by identifying a common core set of disciplines,
but rather a common approach that is based on building
abstractions (models), reasoning about them and using the results
to interpret the phenomena under study.
As we argued, the basics of continuous mathematics and classical
physics should be still viewed as fundamentals in any engineering
field. Moreover, since software permeates practically any
engineering artifact and process, every engineering student should
be exposed to the principles and the mathematical foundations of
computing.
The challenges of education in a rapidly and continuously
changing world should call universities, and in particular
engineering schools, to rethinking their educational mission.
Success (and even mere survival) in such a world requires
identifying the long-lasting principles and strengthening the
foundations. This is true for software engineering as for any other
engineering fields.

6. REFERENCES
[1] Jazayeri, M., Education of a Software Engineer, Keynote

presentation at Automated Software Engineering, Linz,
Austria, 2004.

[2] Dijkstra, E.W., “On the Cruelty of Really Teaching
Computer Science”, Communications of the ACM, 32, 12,
1989, 1398-1404.

[3] Brooks, F.P., "No Silver Bullet: Essence and Accidents of
Software Engineering," Computer, 20, 4 (April 1987).

[4] Baker, A., Navarro, E.O., van der Hoek, A. "An
Experimental Card Game for Teaching Software Engineering
Processes", Journal of Systems and Software, to appear.

[5] Ghezzi C., Jazayeri M., Mandrioli D., Fundamentals of
Software Engineering, II edition, Prentice-Hall, Englewood
Cliffs, 2002.

[6] Abran, A., Seguin, N., Bourque, P. Dupuis, R., “The Search
for Software Engineering Principles: An Overview of
Results”, Proceedings of the 1st Int.l Conference on the
Principles of Software Engineering, Buenos Aires,
Argentina, November 2004.

[7] Kramer, J. “Abstraction is Teachable?”, Keynote at IEEE
ACM SigSoft 16th International Conference on Software
Engineering Education and Training; submitted for
publication.

[8] Musa, J.D., Jannino, A., Okumoto, K., Software Reliability:
Measurement, Prediction, Application, McGraw-Hill, New
York, 1987.

[9] Parnas, D.L., "Software Engineering Programs Are Not
Computer Science Programs", IEEE Software, 16, 9, 1999,
pp. 19-30.

	ABSTRACT
	INTRODUCTION
	KNOWLEDGE AND SKILLS OF A (SOFTWARE) ENGINEER
	CONSEQUENCES ON (SOFTWARE) ENGINEERING EDUCATION
	SOFTWARE ENGINEERING IN CONTEXT: REQUIREMENTS ON CURRICULA
	CONCLUSIONS
	REFERENCES

