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ABSTRACT 
We discuss the technical skills that a software engineer should 
possess. We take the viewpoint of a school of engineering and put 
the software engineer's education in the wider context of 
engineering education. We stress both the common aspects that 
crosscut all engineering fields and the specific issues that pertain 
to software engineering. We believe that even in a continuously 
evolving field like software, education should provide strong and 
stable foundations based on mathematics and science, emphasize 
the engineering principles, and recognize the stable and long-
lasting design concepts. Even though the more mundane 
technological solutions cannot be ignored, the students should be 
equipped with skills that allow them to understand and dominate 
the evolution of technology. 

Categories and Subject Descriptors 
K.3.2 [Computer and Information Science Education]:  

Keywords 
Engineering, software engineering, education, models. 

1. INTRODUCTION 
We discuss the technical skills that a software engineer should 
possess. Rather than focusing on the organization of a course (or 
set of courses) titled “software engineering”, we take the global 
viewpoint of a school of engineering and put the software 
engineer's education in the wider context of engineering 
education. We believe that software engineering (SE) should be 
viewed as an engineering discipline, and that a software engineer 
should be viewed as primarily an engineer. On these grounds, we 
analyze the principles and practices that pertain to the engineering 
culture and also what is special in the case of software 
engineering.  
We emphasize that in general no engineering artifact involves the 
knowledge of a single discipline; thus, engineering disciplines 
cannot be taught in isolation but their essentials must be mastered 
by any engineer, independently of his/her particular field. 
Another main issue that we face in engineering is learning by 
studying (at school) vs. learning by doing (at work) [1]. Our 
strong belief is that the two ways of learning are necessarily 
different and complementary. It would be a mistake to try to fake 
learning by doing at school, and it is almost impossible to resume 
the typical “learning in class and through textbooks” during 
everyday’s work. However, it would be a fatal mistake to adopt 
the idea that the two worlds should ignore—or even disparage—
each other. Learning at school should equip the students with all 
the fundamental skills that will enable them to proceed to lifelong 
learning at work.  

In a continuously and rapidly evolving field like software, 
education should emphasize principles and recognize what are the 
stable and long-lasting concepts of the discipline. Even though the 
more mundane aspects of the state-of-practice (technology, tools, 
methods) cannot be ignored, the students should be equipped with 
skills that allow them to understand and dominate the various 
technological waves without being overwhelmed by them and 
thus avoiding the danger of rapid obsolescence. 

In the following sections of this paper we explain in some detail 
why we believe in this approach and how it should be exploited in 
the organization of an engineering curriculum. The focus is 
obviously on teaching software engineering, but always keeping 
in mind that the software engineer's education is part of a wider 
process aimed at “forging an engineer”. 

Section 2 examines the fundamental skills of a software engineer, 
showing that they are shared by any engineer, but also pointing 
out important differences, which might generate challenges 
peculiar to the teaching of software engineering. Section 3 
discusses how software engineering should be taught within 
university curricula. Section 4 focuses on “putting software 
engineering in context”. Finally Section 5 draws some 
conclusions. 

2. KNOWLEDGE AND SKILLS OF A 
(SOFTWARE) ENGINEER 
Like any other engineer, the software engineer must master 

• the theoretical foundations of the discipline; 
• the design methods of the discipline; 
• the technology and tools of the discipline. 

In addition, he/she has to be able to  

• keep his/her knowledge current with respect to the new 
approaches and technologies; 

• interact with other people (often not from the same culture); 
• understand, model, formalize, analyze a new problem; 
• recognize a recurring problem, and reuse or adapt known 

solutions; 
• manage a process and coordinate the work of different 

people; 
• … 

The above list, far from being exhaustive, is however sufficient to 
enlighten both the differences between learning by studying and 
learning by doing and the differences between learning these skills 
in software engineering and in other fields of engineering. 
At the two extremes, certainly learning the theoretical foundations 
of a discipline is a typical school activity whereas much of 
managing a process and the psychology of interacting with 
people—whether one’s manager, peer, employee, or customer—
can be learned mostly through experience in the filed and exhibits 



often sharply different requirements depending on the peculiar 
environment. 
On the other hand, none of these skills—not even the above two 
extremes—should be learned exclusively in one way. Consider, 
for instance, the typical case of learning programming languages: 
some languages must be learnt in depth at school, but new ones 
will certainly appear and will have to be mastered at work. 
Therefore, teaching at school should focus on two related 
fundamental issues: how to apply good programming methods in 
any language, and how to understand the principles of 
programming languages. Such principles as program design via 
abstractions, modularization, decoupling, documentation apply to 
any programming language. Furthermore, a student who 
understands type systems, binding mechanisms, scope rules, 
runtime memory management, and other similar concepts, can 
more easily learn any new language and its specific subtle 
semantic features. It would be wrong to expose students to a 
plethora of different languages, "because they have to know all 
the possible tools they will encounter in practice". The other 
extreme, is exemplified by Dijkstra [2], who claims that initially 
students should learn only mathematical languages without 
running their programs on real computers. This, however, is 
equally counterproductive, and can mark a chasm between 
university and “the real world”.  
As another example, teamwork should be experimented in school 
project works. It is important that students, before they move to 
work, appreciate the need for scheduling their work with others in 
a team, negotiate requirements and specifications for the parts 
they are responsible of, etc.  
In summary, learning at school should lay the foundations for all 
the skills we listed at the beginning of this section.  The students 
should be mentored to learning most of what they will need to 
continue to learn after leave school, as part of their lifelong 
learning activity. 
It is important to acknowledge that software engineering differs 
from the other more traditional fields of engineering in several 
specific points. These differences affect how is should be taught. 
Let us examine some typical cases. 

• Theoretical foundations are less mature, often “far” from being 
directly applicable, and hence less immediately useful.  
This  is at least a common feeling among practitioners, perhaps 
shared even by several academics. At a deeper insight, however, 
we could argue that, for instance, the difference between a 
Turing machine and a real computer is not greater than the 
difference between the notion of material particle (a body with a 
mass but no volume) and a real physical object such as a car, an 
aircraft, a fly, etc. or the difference between the notion of a 
“perfect gas” and the air of our atmosphere. The study of these 
abstract notions, however, is viewed in traditional engineering 
as foundational starting point that should be part of the 
engineer's education, whereas theoretical computer science is 
often neglected in the software engineer's education. We must 
acknowledge, however, that the models used in traditional 
engineering are more directly applicable, and hence more 
widely used by practitioners. As an example, consider how 
widely applicable Fourier transforms are in signal processing 
and in other fields of electronics. 

• Well-established models and notations are still lacking.  
This point can be seen as the counterpart of the previous. Here 
too a striking example is provided by programming languages: 

it is somewhat astonishing that this field, which should be one 
of the most mature of computer science, still produces major 
novelties almost every year. It is even more surprising that these 
changes have an immediate impact on even lower-level 
(undergraduate or earlier) education. Conversely, introductory 
courses on physics still teach classical mechanics as it was 
taught decades ago. They would never try to incorporate new 
parts to teach quantum mechanics and relativity theory to 
freshmen. 
The situation is even more striking if we move to such aspects 
as requirements analysis, specification and architectural design, 
where the state of practice is still largely ad hoc, and methods, 
notations and tools are still largely ignored in the industrial 
world. 
The states of the art and practice, however, are evolving. The 
standardization and the increasingly wider adoption of UML 
have a positive impact on bridging several gaps. Not only UML 
has been a vehicle—certainly not perfect, but useful—to 
transfer some research results into the industrial world. But also 
it is an example of a notation originated in the field of computer 
science that is now recognized and adopted even in other fields 
of engineering. For example, it has been applied in logistics and 
in industrial manufacturing. This is not the only example of a 
technology that originated in our field and later was imported by 
other engineering fields. For example, control engineers now 
use automata-based discrete events models (e.g. Petri nets) 
along with their original continuous process models. We will 
come back to this issue in the following. 

• The distinction between the essential and the accidental 
 complexity of software [3] is crucial. 
This is the essence of engineering. When solving a problem, the 
engineer must neglect irrelevant details to focus on the 
essentials, otherwise he or she would be lost in an 
unmanageable complexity. The ability to separate concerns and 
focus on the relevant ones at each time is crucial for the 
engineer. This is quite different from the way mathematicians 
work. A mathematician works in a formalized world and mostly 
cares about precision of solutions. The hard question, of course, 
is what, how and when something can be considered to be a 
detail that can be neglected and what, how and when should one 
instead add more detail to achieve better modeling and analysis. 
The answer is difficult and context-dependent in most cases: 
one aspect could be irrelevant from some viewpoint and at some 
phase of the development, whereas it could be crucial in other 
phases. 
For example, in programming it is often useful to concentrate 
first on writing a correct program, ignoring such issues as 
performance and usability. These can be taken into account at a 
later point via correctness-preserving code transformations and 
by improving user interfaces. 
Other fields of engineering have some well-established 
guidelines to apply such difficult choices. In most cases they are 
rooted in the metrics of the adopted mathematical models: 
“neglect quantity X—say a current in an electric circuit—with 
respect to quantity Y if they differ of orders of magnitude”. 
Metrics, and consequently any notion of continuity  are lacking 
or highly controversial in most computer science models. Thus, 
the software engineer must often resort to more generic 
principles such as the separation of concerns  to decide about 
what to focus on. 
 



• Mastering different approaches to manage project complexity. 
The complexity of different software engineering projects, the 
diversity of application areas, and the lack of established 
common foundations makes it likely that the software engineer 
should master different methods and approaches and should be 
capable of choosing the best method and approach that fits the 
problem at hand. For example, the development process can 
follow a highly structured, top-down scheme (like in a waterfall 
lifecycle) or a flexible and iterative scheme (like in extreme 
programming). The process to choose depends on the size of the 
project, its criticality, the relationship with the customer, the 
stability of requirements, and so on. As another example, when 
a system is to be specified, different notations can be used 
according to the stakeholder's viewpoint. There is no universal 
process model and there is no universal notation. The engineer 
has to learn which to use, when, and why, depending on the 
problem at hand. 
Any engineer should own such a skill.  However, the principles 
and, mainly, the techniques to confront with the various 
problems are much more established and less subject to fashion 
and “buzzwording” in traditional engineering than in software 
engineering. Examples can be easily found in the evolution from 
structured analysis/design, to object-orientation, to extreme and 
agile programming, etc. In parallel, and often in contrast, 
academia has been advertising for a long time formal methods, 
but those too have been subject to a rather uncontrolled and 
unpredictable evolution (thousands of abstract machines; logic, 
algebraic, and attempts to apply category-theory based 
approaches) . It is certainly hard not to get lost in such a mess of 
more or less “revolutionary solutions”.  And it is hard to discern 
substance from pure cosmetics. 

1

• More emphasis is needed on interdisciplinary culture and 
communication skills. 
This is due to the very nature of software applications. In most 
of them the software is the “intelligent glue” that integrates a 
complex heterogeneous system: examples go from embedded 
systems to industrial automation systems, to office automation, 
to virtual reality, etc. The software engineer, therefore, even 
more than others, must be able to understand problems and 
models not coming from his or her field and to interact with 
their specialists (of course, he will not replace the application 
domain specialist, nor will she have to gain the same depth and 
breadth of knowledge in their field). 
The above remarks, therefore, can suggest that, and explain 
why, the gap between learning by studying vs. learning by doing 
is deeper in software engineering than in other cases. Perhaps a 
consequence of this situation is that textbooks and courseware 
that aim at teaching practice are often wordy, purely descriptive, 
and overly informal. At the same time, textbooks and 
courseware that teach mostly theory are often unrealistic, only 
deal with toy examples, are not well understood and not well 
accepted by students (and instructors). 

In summary, the widely practiced attitude of comparing software 
engineering with more traditional fields is still valid and thought 
provoking. It still shows important differences besides common 
needs and approaches. It also shows that often the younger 
discipline should strive to get closer to the better-established ones, 

                                                                 

                                                                

1 This is another example of the big gap between learning (and 
teaching) at school and learning (and teaching) at work. 

but sometimes even the converse can produce important progress. 
Fortunately, much has been achieved since the birth of software 
engineering. But there is still a long way to go. 
We wish that some of the recommendations that will be the object 
of the next sections could and should be addressed not only in 
organizing the teaching of software engineering but could also be 
taken into consideration, more generally, in engineering 
education. 

3. CONSEQUENCES ON (SOFTWARE) 
ENGINEERING EDUCATION 
In this section we articulate some general guidelines, derived from 
the analysis of previous section, on teaching software engineering 
as an engineering discipline [5]. 

• Focus on lasting principles rather than last-minute fashionable 
technologies and buzzwords[6], [7].  
This can be harder for software engineering than for other 
engineering fields because, as we discussed in Section 2, 
principles and theory may not be directly applicable, i.e., they 
do not yield normative practical techniques. Yet students should 
be motivated to learning them because they shape their 
mentality and make their approach to solving practical problems 
more mature and systematic. Because the recognition of the 
value of principles may come only later, even after years of 
experience, some “faith and trust” is needed from the students . 
Furthermore, technology is evolving faster and often it is hard to 
distinguish between hypes and real new good approaches. 
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• Integrate class teaching with projects.  
This is a very critical issue in software engineering education. 
On the one hand, just studying principles on textbooks and even 
doing clever and insightful exercises is not real “learning” 
without a practical experience. On the other hand, mimicking 
the complexity of real-life projects in an educational 
environment can be impossible. Thus we need to find innovative 
ways of integrating project work in curricula (see, for example, 
[1] and [4]). We argue that projects should be realistic, but 
students should be aware of the differences with the real life, in 
terms of team size, duration and man power needed to carry 
over the project, requirements for compatibility with legacy 
systems, unavailability of “real” stakeholders, etc. At the same 
time, project work should exploit the opportunities (research 
methods, prototyping, …) that often are unavailable in the 
industrial world. Students may turn out to be carriers of 
innovation when they enter the business world.  

• Try to make things easy and understandable. 
Stated in this way, such a recommendation may even sound 
obvious. How to achieve this goal, however, is far from trivial 
and involves conflicts. Indeed, many details should be 
abstracted away to make problems manageable within the 
typical terms of a university course and to help focusing 

 
2 It is not uncommon experience for us teachers to receive “post 

factum” recognition from former students with sentences such 
as “When I attended your course I hated topic xx. Also, as soon 
as I have been hired in my first company I was shocked by 
doing things that seemingly had nothing to do with what I 
learned at school. But now, after several years of practical work 
I understand and appreciate the value and usefulness of that 
teaching.” 



attention on the core of the problem, possibly one issue at a 
time. This may lead to class examples and exercises deal with 
“toy problems”, a term that is often used in a derogatory sense, 
to mean unrealistic and ultimately useless or even misleading. 
We claim instead that toy problems may be quite insightful if 
well chosen; the literature is now rich of successful examples 
often carved from real-life problems but “cleaned up” from 
irrelevant and distracting details. 
As a side remark, one might wonder why, in general, toy 
problems adopted in other fields such as mechanics are better 
accepted by students than in software engineering. For instance, 
why an exercise that asks for computing the trajectory of a 
missile suggesting to consider the missile as a material particle 
is appreciated and well accepted, whereas the classical dining 
philosophers problem is often disparaged as a “toy problem”—
not only by students? Perhaps the answer to such a question is 
more of a psychological than of a technical nature. 

• Teach how to select and evaluate different methods and 
approaches rather than follow them like recipes. 
Often methods force a normative behavior, but their application 
must be preceded by a careful and scholarly analysis of 
competitive approaches, a rigorous evaluation of the trade-offs 
and costs and benefits. As opposed to more traditional fields of 
engineering, software engineering has only a limited availability 
of ready-made normative methods that are scientifically 
supported. The ability to perform cost/benefit analysis, however, 
is a general skill that is typical and common to all areas of 
engineering. 
Here again we see how learning by studying and learning by 
doing should complement each other, the latter building on the 
foundations laid by the former. The teacher and the student 
should insist on a critical and comparative attitude; the teacher 
should encourage the student to experiment, to question claims 
given for granted in the literature, in order to come to her own 
opinions and decisions. The junior software engineer probably 
will not have so much freedom in making choices and will have 
to accept and comply with company-wide decisions made by 
someone else, maybe even long time before he or she has been 
hired. Nevertheless the engineer will certainly better exploit the 
company’s methods if previously trained to apply a critical—yet 
constructive—attitude. The senior software engineer or the 
manager, instead, will have to choose a project’s or even the 
company’s new standards, and in this case he or she will have to 
be critical, comparative, and open to evaluating novelties by 
distinguishing the real progress from rubbish. 

4. SOFTWARE ENGINEERING IN 
CONTEXT: REQUIREMENTS ON 
CURRICULA 
Engineering is seldom highly specialized and narrowly focused. In 
most cases it deals with systems, often involving heterogeneous 
and interdisciplinary aspects; this is even more true in the case of 
software engineering. The ultimate purpose of software, in fact, is 
to allow computer-based systems to interact with their external 
environment, to control it, automate functionality, or provide 
service. The external environment may be the physical world of a 
controlled chemical plant or an intensive-care unit in a hospital. 
Or it may be the organizational world of a business unit to be 
supported in their sale operations; or a set of players who are 
competing in some Internet-based game.  

Although a software engineer cannot be an expert in every 
physical domain, he or she must be able to interact with experts 
from those domains. Thus, software engineering cannot be taught 
in isolation. It must be put in context—how broad is an open issue. 
We can categorize the context of software engineering  as follows: 
Mathematical background  
This is a controversial issue although there is a general consensus 
that mathematics provides the fundamental background for every 
engineer. It is also true, however, that the gap between 
mathematical foundations and engineering applications is wider 
and less understood in software engineering.  
It is often claimed that traditional engineering needs continuous 
mathematics whereas software engineering needs discrete 
mathematics. We think that such a view is fairly narrow-focused 
and misses the real relationship between engineering and 
mathematics. We claim, on the contrary, that any engineer, not 
only a software engineer, must have a solid background in all 
fundamental areas of mathematics: 

• traditional continuous mathematics (differential and 
integral analysis and calculus );  3

• discrete mathematics (logic, combinatorics, algebra; 
more generally, “non-continuous mathematics”); 

• statistics and probability theory. 
There are many strong reasons to support our view. 
First of all mathematics fosters rigorous reasoning. Each branch of 
mathematics, however, exhibits some specific forms of “building 
its own truths” which, all together, provide a formidable 
background for solid reasoning. Continuous mathematics stresses 
the unavoidability of errors but provides the ways to make them 
small enough so that they become tolerable. Combinatorics 
teaches how to “count” the members of a class of various 
elements and how to “arrange them according to some rule”. 
Mathematical logic teaches how to build new truths from 
elementary ones and how to check whether a claim is true or false. 
Algebra teaches how to abstract and generalize particular cases 
into wider categories; Statistics and probability theory teach—
among other technical skills—how to build reliable information 
on the basis of uncertain or variable data. All these skills should 
be part of the foundational tools of any engineer! 
We should also be careful and flexible when we judge the 
"usefulness" of mathematics in terms of direct practical 
application. It is certainly true that many software engineers will 
never have to solve a differential equation. However, teaching 
only the mathematics that can be directly applied now, would be 
the same mistake as—say—teaching only the last minute 
middleware technology instead of the lasting principles of 
software construction. We simply cannot foresee what will be 
directly applied of what we are learning now; on the contrary we 
should be ready to learn, master, and apply some new technical 
and mathematical machinery whenever needed. The need for 
introducing some metrics in a new “domain of knowledge” and, 
consequently, the need to “make a distance as small as possible", 
                                                                 
3 Notice that we used both terms analysis and calculus: the former 

emphasizes reasoning and understanding mathematical 
definitions and properties; the latter focuses on building 
algorithms to solve practical problems once they have been 
formalized through suitable equations and a conceptual solution 
has been proved by some theorem. 



which leads to the abstraction of a "continuous domain" and the 
concept of limit, may arise for the software engineer in several, 
often unpredictable, circumstances. For instance recent techniques 
in the security domain (e.g., SPAM filtering, misuse and anomaly 
detection) are based on some metrics defined on the message 
flows and identifying some threshold to separate the “good ones 
from the bad ones”.  Applications of continuous mathematics can 
also be found in other areas, such as learning algorithms or 
performance modeling and analysis. 
Examples that show the need for software engineers to have a 
solid background in statistics and probability theory include 
software reliability modeling [8] and experimental methods 
applied to evaluating software quality, testing, and other empirical 
approaches. 
We do not claim that any engineer must have the same strong 
background in all types of mathematics—it would be enormous 
and unmanageable. The relative balance between the various 
branches of mathematics can vary among the various fields of 
engineering. Also, advanced studies in some fields of engineering 
can require going in depth into fairly sophisticated mathematical 
technicalities. However, the fundamental background should be 
based on a wide range of mathematical fields.  
Last, but certainly not least, the already emphasized need for the 
software engineer to interact with people with a different cultural 
background requires the ability to “find a common language” with 
them. This certainly applies to the mathematical part of the 
language, although it has even more important implications that 
will be discussed later. 
The core of computing science 
This is certainly the least controversial part, at least in its 
essentials. There is no doubt that topics such as programming and 
programming languages, computer architecture, operating 
systems, databases, networking, computation and complexity 
theory, etc. are an essential part of the culture of any software 
engineer. 
Rather, there could be some discussion on the borderline between 
what is considered to be the core of computing science and what 
instead more properly belongs to software engineering [9]. As an 
example, does object-oriented programming belong to the basics 
or is it part of software engineering? What about testing? 
Certainly, one should learn some basics of testing even in 
introductory courses, but most testing methodologies belong to the 
more complex world of software engineering. Software processes 
and their management also share many organizational aspects 
with other disciplines: this is in fact another example of strong 
intersections, but also of striking differences, between software 
and other engineering disciplines. On the one hand, it is clear that 
in both cases we deal with the problem of organizing, managing, 
coordinating, and monitoring the work of several people; on the 
other side the human intensive distinguishing features of software 
production makes it much less predictable than, say, organizing 
the construction of a dam. 
However, stating a precise borderline between the core of 
software engineering and its computing and organizational context 
is not such a big issue, once the important topics are well taught in 
a well planned and well coordinated curriculum. 
The essentials of the “physical world” 
Software intensive systems do not exist in isolation. They are built 
to be part of a wider and more general environment. Any 

(software) engineer should possess the necessary background to 
understand such a global environment. This includes: 

• Mechanics, thermodynamics, electricity, etc. 
• The technology on which computing science and 

engineering is built: electronics, telecommunications, … 
• The “social physical world”: economics, business 

organizations, communication, management, etc. 
To some extent most of these disciplines are part of many 
computing curricula. However, their role, impact, and relative 
weight within curricula are highly controversial. Without going 
into a questionable quantitative evaluation, we claim that most 
often the teaching of the above topics is too superficial and 
descriptive. An even precise and accurate description of the 
physical phenomena is not enough to make their concepts and 
principles real engineering tools. Instead the typical engineering 
attitude that consists of  

• observing a—not necessarily physical!—phenomenon,  

• building a model of it, 

• reasoning on it, both qualitatively and quantitatively, 
with the help of the model 

should be emphasized and exemplified in some depth within the 
context of all these disciplines. We see several good reasons to do 
so, even sacrificing overspecialization in elective fields. 
First, note that basic engineering principles—such as 
modularization, abstraction, modeling, verification, etc.—are 
quite general, and crosscut all engineering fields. They should be 
used systematically not only in teaching computing science topics, 
but also teaching “the essentials of the physical world”. For 
example, one could stress the analogy between considering a 
component of an electric circuit as a black-box, of which only the 
external behavior is known, and the principle of information 
hiding, through a clear separation between module interface and 
its implementation. 
Also, a broad culture helps reasoning by analogy and therefore 
fosters reuse. The ability of reusing any type of knowledge has 
been listed above as a major skill for the software engineer. 
Once again, the need for the software engineer to interact with 
people with a different culture imposes the ability to understand 
and to master at a basic level their own models. 
Let us also point out that here we are referring to the activity of 
formally reasoning on models of the real world. Such a real world 
is not exclusively the world of physical objects (plants, cars, 
aircrafts, etc.) but also the world of human organizations (banks, 
agencies, offices, hospitals, even courts of justice, etc.). These 
entities too have to be abstracted into a suitable formal model in 
order to be managed with the aid of software, which is formal by 
its very nature. This is not to say, however, that the activity of an 
engineer must be based exclusively on formal and mathematical 
reasoning on abstract models. Experience, common sense, 
intuition, … are fundamental tools of the engineer as well as of 
most other professionals. These skills, however, are acquired as a 
result of experience in the real world, rather than being learned by 
studying at school. 
We would like to conclude this section by insisting that it is not 
only true that software engineering has to “learn” from traditional 
engineering, but also the converse is true. Software engineers 
cannot ignore continuous mathematics, but civil engineers, 
industrial engineers etc. cannot ignore discrete mathematics and 



logic. The software engineer cannot be an expert in mechanics or 
thermodynamics, but rather should possess the basic knowledge 
that would allow him or her to interact with the specialists in these 
fields, should the need arise in acquiring requirements for a new 
application. Similarly, the mechanical engineer should be able to 
communicate with the software engineer who is designing the 
software embedded in the cruise control of a new vehicle, 
understanding the feasibility of certain real-time functionality. No 
engineer can ignore the basics of computer science, nor how 
software, which permeates practically all projects, is organized, 
documented and built: poor quality software can hamper a global 
system no matter how fine and sophisticated are other 
components. Notice that by “the basics of computer science” we 
do not mean how to use the Internet, productivity tools or, in 
general, computer tools, but the principles of computing science. 
Cross-fertilization with other engineering fields is needed, in both 
directions; no matter how focused the curricula in the various 
fields are. 

5. CONCLUSIONS 
In this paper we presented our viewpoint on the challenges of 
teaching software engineering. We restricted our discussion to  
teaching within university education, ignoring the important areas 
of continuous education, special purpose intensive courses, and 
material mostly devoted to professionals. Rather than addressing 
what to teach in a software engineering class, we focused our 
attention on how to organize a curriculum for a software engineer 
and how to put it in the proper context. 
We based our analysis on the unavoidable and complementary 
differences between learning by studying and learning by doing 
[1] and on the comparison between software engineering and 
other fields of engineering. 
We concluded that a major challenge for the software engineering 
education comes from a deeper gap that exists between the two 
forms of learning than it happens in other, better established 
engineering fields. We analyzed the technical and “social” reasons 
of such a circumstance and suggested a few remedies (no “silver 
bullets”, of course!). We also pointed out that the state of the 
affairs is evolving in a positive direction. 
We strongly believe that, by its very nature, software engineering 
cannot be taught in isolation but must be put in the proper context. 
This is true for practically all branches of engineering, since most 
of the engineering tasks have to do with designing, building, and 
managing of systems that are quite heterogeneous in nature. 
This remark broadens the scope of the challenge, because it leads 
to the question of what should be the foundations and the basic 
principles of engineering education, not just software engineering. 
At the beginning of engineering as a systematic discipline, it was 
fairly natural to define the core knowledge of any engineer. The 
continuous advances in science and technology inevitably led to a 
high level of specialization. For instance, presently our Technical 
University offers an order of 500 different courses for 
approximately 20 curricula that provide a degree in engineering. 
The mere proliferation of courses without caring about cohesion 
of the underlying foundations may lead to disasters. 
We claim that the more the specialized culture and technology 
advance, the more education should strive to build a solid 

common mentality and culture that must serve as a foundation on 
top of which the special knowledge of a peculiar branch should be 
rooted and integrated with its context. The definition of such a 
common basis, however, should not be equated with keeping the 
same subjects that were taught for decades, before computing 
entered the engineering scene. Moreover, the common basis is not 
so much defined by identifying a common core set of disciplines, 
but rather a common approach that is based on building 
abstractions (models), reasoning about them and using the results 
to interpret the phenomena under study.  
As we argued, the basics of continuous mathematics and classical 
physics should be still viewed as fundamentals in any engineering 
field. Moreover, since software permeates practically any 
engineering artifact and process, every engineering student should 
be exposed to the principles and the mathematical foundations of 
computing.  
The challenges of education in a rapidly and continuously 
changing world should call universities, and in particular 
engineering schools, to rethinking their educational mission. 
Success (and even mere survival) in such a world requires 
identifying the long-lasting principles and strengthening the 
foundations. This is true for software engineering as for any other 
engineering fields. 
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