
Advertising Formal Methods and
Organizing their Teaching: Yes, but …

Dino Mandrioli1

1Dipartimento di Elettronica e Informazione, Politecnico di Milano,
P. L. Da Vinci 32, 20133, Milano, Italy

mandrioli@elet.polimi.it
www.elet.polimi.it/~mandriol

Abstract. This position paper aims to address most of the “challenges”
suggested by the conference’s CFP plus a few others. The style is deliberately
informal and colloquial, occasionally even provocative: for every examined
point some obvious agreement is given for granted but a few, more
controversial, “counterpoints” are raised and hints are suggested for deeper
discussion. At the end a constructive synthesis is attempted.

1. Preamble: The Essence of Formal Methods: What are they?

To optimize the organization of the teaching of formal methods (FMs) and their
chances of gaining acceptance, we must first agree on some basic terminology. I very
much regret that most terms are often used with fuzzy, often context-dependant,
sometimes even contradictory, meanings. For instance, the term “verification” is often
used as a synonym of –possibly formal– correctness proof; consequently it is opposed
to testing. This is particularly unfortunate: first, because, in the common
understanding of non-specialized people, the term “verification” is much
comprehensive and includes the application of any technique aimed at guaranteeing
that an artifact satisfies its requirements and goals; second, opposing different
techniques with a common goal fails to show and to exploit their complementarity1.

The term FMs itself requires some preliminary agreement on its meaning. There is
now some wide consensus on claims such as
• “FMs are not mathematics but do exploit it”
• “FMs are not theoretical computer science, or theory of computation, but do

exploit it”
• “FMs for Computer and Software Engineering (CSE) are rooted –mainly– in

discrete mathematics whereas traditional engineering (civil, industrial, electrical,
… engineering) mainly exploits continuous mathematics”

1 This habit of using general, widely known terms, with specialized, context-dependant,

meaning, occurs unfortunately in many communities: consider, e.g., the use of terms
“framework” and “pattern” in the object-oriented culture.

http://www.elet.polimi.it/%7Emandriol

• “Formal Methods should not be confused with formal models. Although they use
formal models, they include much more: mainly guidelines to apply models at
best to practical problems; tools supporting them, etc.

On the other hand different interpretations of the term FMs range, roughly speaking,
between two extreme positions such as:
• “A FM must be fully formal”, i.e., it must drive the user through the whole life

cycle so that every artifact, from requirements specification to executable code,
is documented through a formal syntax and semantics and every step is formally
proved correct.

• Any “level of formality” is acceptable: for instance, using a formally defined
graphical syntax can be considered as a FM even if a rigorous semantics for the
adopted notation is lacking; also, some steps of the design process can follow
formal guidelines but others can be carried over in a more informal way.

A typical example of such a lack of general agreement between the above positions is
provided by UML, which is considered by many practicioners as a FM, whereas many
theoreticians do not recognize it at all as such.

Personally, I am in favor of a fairly comprehensive and “liberal” definition of FM,
as any method that in some way exploits the use of formalism. In particular, I
recommend an incremental attitude to the application –and teaching– of FMs: moving
from informal documentation to UML is an important initial step in the path that leads
to a full exploitation of FMs in industrial activities; as well as, further on, enriching
UML with –any kind of– semantic formalization, and augmenting refinement steps by
formal correctness proofs. Such a liberal, or incremental, or “modest” attitude is also
recommended in the literature as “lightweight formal methods” (see, e.g., [1], [2]).

2. Advertising and Promoting FMs: Yes, but …

Nowadays, a great amount of effort must be put in the advertising and promotion of
any “product”; culture is no exception and the old times of academia compared to an
“ivory tower” are perhaps buried forever. Even scientific research requires a lot of
“marketing” and publishing deep technical results on major archival journals is by no
way warranty of success. Thus, there is now a fairly general consensus on claims such
as the following ones:
• At the root of much reluctancy against FMs there is often a “mathfobia”, typical

of many students.
• Preliminarly to teaching FMs we should strongly motivate their use by

emphasizing the risks and the costs of poor quality products and the benefits that
can derived by the application of FMs. This applies not only to industrial
“decision makers” but even to students who are more and more reluctant to
accept a course “just because it is proposed by the university”.

• “Fun” in the application of FMs should be emphasized through several means
(amusing examples, games and competition, user friendly tools, etc.); tedious
mathematical details should be avoided and possibly hidden.

• Tools should be used to relieve the user from many, often boring, clerical
details, to make the whole process more efficient, reliable and productive.

• As a particular case joining the two above points, so called “push button” tools
such as those based on model-checking are strongly recommended since, in
principle, they allow the user to be concerned exclusively with the writing of
properties to be analyzed, leaving all the burden of their verification to
automatic tools.

However, most of the above claims hide some subtle traps that could lead to even
counterproductive actions. Thus, in their application, one should also keep in mind the
following “counterpoints”:
• Do not “oversell” FMs; avoid “miracle promises” such as “FMs help producing

bug-free software”; “FMs make testing useless”; etc. Such claims can be easily
verified as false or at best as overstated and consequently produce the opposite
result2.

• Tools should not be advertised as a “panacea”: even outside the FM realm many
failures happened due to the fact that managers erroneously hoped that just
buying state-of-the-art tools guarantees innovation and improvement in the
production process. Also, in some cases, too early distribution of prototype tools
could produce a global rejection of the underlying method only because of the
poor quality of, say, tool’s interface.

• In particular “push-button” itself maybe an example of overselling: in fact, most
often such tools are based on brute force algorithms that “do not scale up”, i.e.,
whose complexity becomes soon intractable with the increase of problem size;
thus, in order to obtain practical results, users must indeed apply some
intellectual skill.

• Not only the contents and the style of the teaching, but even the advertising
arguments should be carefully tailored to the particular audience. There are
major differences not only between university students and industrial
practicioners, between engineers and managers, but even between graduate and
undergraduate students, between young and experienced engineers (the former
are usually more fresh-minded and open to novelties; the latter only accept
minor changes to their current habits); between software engineers and
application domain experts (both should be acquainted with FMs but in different
ways), etc.

• A particular class of “students” who are often even more reluctant to change
their habits than “official students” is the class of … teachers, both in the high
schools (often the deprecated mathfobia is rooted in bad teaching of
mathematical bases at junior schools) and even in universities (where far too
often professors of Department X ignore and/or disparage the discipline of
Department Y. FMs teachers are not absent from this class …).

• If some “thresholds of commitment and skill” are not guaranteed it is better to
downgrade the objective or even to give it up at all. This general claim has
several particular instantiations. For instance:
o If within an industrial environment there is not enough interest and

resource commitment in the training of FMs (typically: short term delivery
deadlines repeatedly overwhelm time scheduled for training sessions)
further insisting may become counterproductive.

2 Some classic references about “selling and overselling FMs” are [3], [4], [5].

o Students’ mathfobia can and should be fought with “fun” and other tools
but not up to the point of hiding the fact that some mathematical skill is a
necessary prerequisite for successful application of FMs. Even without
going to extreme positions such as Dijkstra’s [6], FMs teaching should
avoid oversimplified examples that hide the technical difficulties of
intricate cases3.

• (With main reference to the case of teaching to industrial people). In general,
“teaching” does not consist exclusively in explaining a topic; a formidable
teaching aid is “working together”. Building joint teams of application experts
and FM experts often produces the best results. This practice should not be
applied only during the training activity: in some cases the level of expertise that
is needed is such that temporarily “hiring” specialized consultants is more
effective than insisting in teaching highly sophisticated technology to not-
sufficiently-motivated-or-skilled people. For instance, in several cases of
industrial environments, application domain experts could and should be
involved in the production of specification documents, but the application of
powerful but difficult formal verification techniques such as theorem proving
should be left to FMs experts.

3. So what?
Integrating the teaching of FMs within engineering curricula

Let me now address the issue of organizing the teaching of FMs. The foundations
over which I build my proposal are the following (as usual, some of them are widely
shared, others are perhaps more controversial):
• FMs are a very general engineering principle; they have always been a major

tool to achieve rigor in analysis and design (one can be rigorous without being
formal, but this is usually more difficult). FMs in general should be well
mastered within any field of science and engineering.

• FMs are, however, “context-dependant”: traditional science and engineering
(physics, biology, mechanical, industrial, civil engineering, …) have from a long
time their own well-established FMs. They are mostly rooted in continuous
mathematics. There is no doubt that computer science and engineering have
developed their own FMs and that they are –much more, but not exclusively–
rooted in discrete mathematics and in mathematical logics. It is also a(n
unpleasant) fact that FMs are much less exploited within Computer Science and
Engineering (CSE) than in other older fields.

• As an obvious consequence, the teaching too of FMs must be somewhat context-
dependant: it certainly depends on the specific application field; but it must also

3 As a “counter-counter-point” the above argument should not be intended as a generic blame

of so-called “toy problems” as opposed to “real-life” problems. In my opinion, well-designed
toy problems are often even a better teaching aid than real-life projects since they help
focusing attention on –few, selected– critical aspects, whereas real projects often bury subtle
points under a mass of clerical details.

depend on the environment within which it occurs: teaching FMs within
university curricula may be quite different than teaching them in an industrial
environment, perhaps in a few intensive weeks with highly specialized goals and
focus.
In this paper my attention is mainly centered on university curricula4.

• However, I consider particularly unfortunate the present state of the art of the
organization of university curricula, where, at every level, specialization far
overwhelms generality and cross-fertilization among different disciplines. For
instance, despite the fact that computer-based applications are mostly part of
heterogeneous systems (plant control systems, banks, embedded systems, etc.)
not only Computer Engineering (CE) curricula are quite distinct from other
engineering curricula, but we have major differences between Computer Science
(CS), CE, Software Engineering (SE), etc.
FMs teaching, unfortunately, is no exception to such an overspecialization: in
some cases there have been even proposals of FMs curricula per se, forgetting
that FMs are a means for rigorous and high quality design, not a goal; also,
many FMs courses focus on single, often fashionable, methods (e.g. model-
checking, or theorem proving) failing to show commonalities in their goals and
complementarities in their approaches.

In conclusion, I believe that engineering curricula should first emphasize the general
usefulness and the common principles of FMs per se; a strong interdisciplinary
background should also be shared by almost all engineering curricula: CSE majors
should know enough of the FMs of traditional engineering (e.g., models for electric
circuits) and conversely (many non-computer-rooted engineering curricula wrongly
consider computer science just as a tool for numerical computations, access to
Internet, etc, ignoring its fundamental richness of concepts and principles.)

Only later, the context-dependant part of FMs should be tailored towards the
specific needs of the application field.

To state it in another way, the teaching of FMs should be well-integrated in any
engineering –and not only software engineering– curriculum and cannot be addressed
by itself.

Next, Section 3.1 suggests an example of how the teaching of FMs could be
“plugged” into a curriculum for CSE majors, which is the main focus of this paper. To
complete the picture, Section 3.2 also provides a few hints on the teaching of (CS)
FMs within non-computer engineering curricula.

3.1 A FM Track within CSE Curricula

Figure 1 provides a synthetic view of the way the teaching of FMs should be
integrated within a CSE curriculum. Then, a few explanations and comments are
given for some distinguishing elements. Notice that Figure 1 does not display the full
structure of an ideal CSE curriculum: it only deals with the integration of FMs

4 Some personal experiences and lessons learned in the introduction of FMs-based practices in

industrial environments are reported in [7] and [8].

teaching within it; essential –in my opinion– topics such as basics of physics,
chemistry, industrial and civil engineering, economics, etc. are omitted.

Non-contin
mathemati

Ad

Legend: single-headed
mutual dependencies an
beneficial but not manda

Figure 1 A synthetic vi

3.1.1 Mathematical

Every scientist and en
non-continuous (this
Strong background do
Mathematical background
uous
cs

Theoretical foundations o

F

vanced and specialized FMs

FMs f
securi

arrows denote a precedence
d benefits; dashed arrows den
tory).

ew of the relations between FM

Background

gineer should have a strong
term is more comprehens
es not mean “many topics”
Continuous
mathematics
f CS

Introductory
CS courses:
Programming,
Architectures,
…
Ms core

or
ty

Advanced
applications:
Embedded
systems,
E-commerce,
FMs for concurrent
and real-time
systems
relation; do
ote weak p

s and other t

 backgroun
ive than “
but essenti
Basic application
courses:
Software
engineering,
Data Bases,
Distributed
systems, …
Industrial
automation,
…

uble-headed arrows denote
recedence (general culture,

ypical topics of CSE.

d both in continuous and
discrete”) mathematics.

al topics well-rooted and

well understood. I insist that even CSE students must have such a background on
mathematical analysis and calculus: the concept of continuity is fundamental for our
community too! Certainly, the impact of non-continuous mathematics is more direct.
It should include: elementary algebra and set theory; basics of mathematical logics
(propositional and predicate calculus); a little of combinatorics. All in all
mathematical background should require at least 5 one-semester courses (for CSE
majors: 3 courses on non-continuous and 2 on continuous mathematics. A very
minimum could be 2+2).

Remarks

There is a tendency, mainly imported from the US, to give little and fairly superficial
mathematical background at the undergraduate level; later on, graduate and more
talented students –it is claimed– will be able to go deeper into mathematical concepts.
I am against this approach, as far as it concerns the mathematical foundations:
foundations must be understood in depth from the beginning to help understand even
trivial applications (e.g., the execution of a machine instruction); advanced
mathematical topics can and should be taught at the graduate level as well as
advanced applications.

Another major hole in the normal way of teaching mathematics is the lack of
training in building deductive proofs. Often many –maybe complex– proofs are given
but the students only have to learn and repeat them –and, sadly, they do so by heart,
without even trying to understand them; instead, little or nothing is done to increase
their skill to develop their own proofs. This unfortunate circumstance is probably the
main reason why formal correctness proofs are considered as the most inapplicable
formal technique.

3.1.2 Basics of Theoretical Computer Science

Notice that I distinguish between theoretical foundations of CS (TFCS) and –basic–
FMs: both contribute to the theoretical core of a CSE curriculum, but they are two
different things: TFCS is about models and their properties, FMs are already a first
application thereof to practical problems.

TFCS is often identified with Automata and Formal Language Theory. I disagree,
although certainly such topics are important TFCS. My favorite –one-semester–
course on TFCS includes:
• Models for CS: simple automata and their basic properties; simple grammars;

(usually I cover much less on these topics than traditional textbooks); use of
mathematical formulas (essentially first-order formulas) to formalize simple
systems (e.g., formal languages, but also every-day-life objects: railroad
crossing systems, elevators, to mention “classical examples”; it is nice and
useful to exploit simple examples of hybrid systems, to give the message that
often for some system components continuous models are suitable, whereas for
others discrete models fit better).
The fundamental skill of this part is the ability to formalize reality much more
than deducing sophisticated mathematical properties from other mathematical
properties.

• Basics of computability. Despite a few “revolutionary claims” I still believe
that the halting problem plays a fundamental role in this topic. It must serve,
however, the purpose of going deep into “what can be done and what cannot be
done by a computer”. In first courses in CS and programming I always get
questions whose answer is “there is no algorithm to build algorithms to solve a
given problem”; but I also add “I will be able to explain you better this claim in
the TFCS course.”

• Basics of complexity theory. This topic is fairly controversial, at least in Italy:
our students usually attend courses on algorithms and data structures (where,
typically, they learn tree-managing, sorting, …) before TFCS. Thus, the goal of
resuming the complexity issue here is not to teach them to understand whether
an algorithm is O(n2) or O(n.log(n)); rather, it is to teach them to understand
when a logarithmic cost criterion is better than a uniform cost criterion and why
in some cases the “poor Turing machine” is a better complexity model than the
powerful Java Virtual Machine or than counting the statement execution in a C
program.

Dave Parnas [9] seems to be in agreement with the above view.

3.1.3 Core FMs topics

Not surprisingly, “core FMs” coverage should go somewhat in parallel with the basics
of design courses such as Software engineering, Hardware design, Operating systems,
etc.

Here is a personal proposal for its structure:
• FMs for system specification

This should exploit the knowledge of basic models such as automata and logic
formulas to come up with formalization and analysis of real systems. It should
include some examples of requirements elicitation.
Two important remarks are in order:
o Accent should be on methods rather than on languages: e.g. languages such

as Z or VDM can certainly be used as vectors to illustrate the methods, but
methods should be the real focus just as in programming courses the accent
should be –but often is not– on programming principles, not on C rather
than Pascal or Java.

o I emphasize the term system specification as opposed to software
specification, the latter being a particular case of the former.

• FMs for design
Here clearly, the main keyword is refinement. Again several linguistic choices
are possible (e.g., B) but accent should be on methods.

• FMs for system verification
Various verification methods should be reviewed and formally treated:
o “Traditional” formal correctness proofs certainly deserve attention. But

FMs for verification are certainly not only proofs (this is a common and
still hard to fight misunderstanding).

o Model checking –of course!– should be presented as a major “winner”
among FMs.

o FMs do support also verification techniques traditionally considered as
empirical and opposed to FMs: FMs for the derivation, evaluation, … of
testing is a main argument on this respect.

Remarks

• Often “practical courses” such as Software engineering do cover part of the
above topics, mainly when the teachers have some “sympathy” with FMs. As an
obvious consequence a problem arises of coordination and borderline when
plugging a FM track within a CSE (and not only) curriculum. For instance,
about system specification, a SE course could introduce to UML and to its use,
and a well coordinated course on FMs (see the first horizontal arrow in Figure 1)
should mention motivation, problems, and approaches to make a UML
specification fully or partially formal.

• As it happens with most “life-cycles” the above structure reflects different
phases of system development that in practice should not be necessarily applied
in a “waterfall” style. For instance, some amount of verification (V&V) must be
applied during requirements elicitation. Of course it is up to the teacher to decide
the best organization of the topics.

In my opinion the topics addressed in this section should approximately constitute the
part of a FMs track plugged into an undergraduate curriculum.

Of course, –we certainly agree within the FM community– such a track (not my
own proposal but any track in FMs) should not be an elective track for a minority of
theoretically oriented students but should be a core part of the whole CSE curriculum.

The next section outlines, instead, more advanced topics in FMs, that should
probably be covered at a graduate level.

3.1.4 Advanced FMs Topics for Specialized Applications

There are, of course, several advanced topics in FMs, usually associated in a natural
way with emerging or specialized application fields. In this paper, it is perhaps not
necessary to go deep into such an issue.

Typical examples of such topics are:
• Models and methods for concurrent and/or distributed and/or real-time systems
• Models and methods for Artificial Intelligence
• Models and methods for security
• …

What is most important here –nowadays even more than in the past– is a strong
emphasis on critical evaluation, comparison, and integration between different
methods, which reflect different requirements of more and more integrated
applications. A fashionable example of these days is how fault tolerance, real-time,
security, all concur to make a system dependable as a whole.

In this case too, strong coordination between FMs courses and corresponding
applicative courses is demanded. Even more, in such specialized fields one could
merge into a single course the treatment of the formal model and its exploitation to

the application field; although with this approach there could be the risk of
(over)specialization, thus missing important integration and cross-fertilization
chances.

3.2 On Possible FMs Tracks within non-CSE Curricula

This paper focuses on integrating a FM track within a CSE curriculum. However, I
also insist that a suitable track devoted to “CSE FMs”, i.e., methods rooted into non-
continuous mathematics and devoted to computer-based applications, should be
included in other science and engineering fields to complement “their” traditional
FMs. The teaching of the various FMs should be somewhat symmetric: on the one
side, it is important that CSE majors are exposed to some continuous mathematics and
related methods; on the other side the normal CS culture that is provided to physicists,
industrial and civil engineers, etc. should not be restricted to describe computers as
tools for enhancing their job but should include fundamental concepts helping to
model and analyze systems as a whole: after all most systems are hybrid: thus their
global understanding requires the managing of both families of models and methods
from both communities. Only later on, in the lower and more specialized phases of
the design every engineer will go deeper into his own specialized formalism.

As an example, the track described above for CSE majors could be adapted
(restricted) to non-majors in the following way:
• One course only for non-continuous mathematics (summarizing the main topics:

some predicate calculus and a little of combinatorics and set theory).
• One course presenting a selection of FMs particularly well-suited for the main

science or engineering field. Such elements could also be included within a
global CS course that integrates informal and formal methods: for instance, a
software engineering course for mechanical engineers could include the
important issue of specifications and could present some UML possibly
integrated with a little formalization: an historical fact that strongly supports
such an “open attitude” towards formalisms is that Parnas’ SCR has been used to
do some specification analysis in cooperation with pilots [10].

4 Conclusions

There is much agreement that teaching is a crucial factor to increase acceptance of
FMs in the practice of industrial projects. In this position paper I reviewed,
reinforced, and complemented a few suggested clues to improve the state of the art. I
also argued in favor of some guidelines that are not often agreed upon, or even
adversed, in many university curricula. In essence, I argue for a strongly
interdisciplinary approach in the engineering fields as opposed to highly specialized
curricula, and for a FMs track that is strongly integrated within engineering –and not
only engineering– curricula (as opposed to curricula that have FMs as their main
topic, and even in the title); that exploits discrete as well as continuous mathematics;

that emphasizes the application of formal models as opposed to teaching one or more
specific formalism.

5 References

[1] Easterbrook, S.; Lutz, R.; Covington, R.; Kelly, J.; Ampo, Y.; Hamilton, D.. “Experiences
using lightweight formal methods for requirements modeling”. IEEE Transactions on
Software Engineering, Vol. 24, no. 1, pp. 4-14, 1998

[2] Saiedian, H., Bowen, J. P., Butler, R. W., Dill, D. L., Glass, R. L., Gries, D., Hall, A.,
Hinchey, M. G., Holloway, C. M., Jackson, D., Jones, C. B., Lutz, M. J., Parnas, D. L.,
Rushby, J., Wing, J. and Zave, P.. “An Invitation to Formal Methods”. IEEE Computer,
Vol. 29, no.4, pp. 16-30, 1996.

[3] Hall A. "Seven Myths of Formal Methods", IEEE Software, Vol. 7, no. 5, pp. 11-19,
September 1990.

[4] Bowen J., Hinchey M., "Seven More Myths of Formal Methods", IEEE Software, Vol. 12,
no. 4, July 1995

[5] Bowen J., Hinchey M., "Ten Commandments of Formal Methods", IEEE Computer, Vol.,
28, no. 4, pp. 56-63, April 1995.

[6] Dijkstra. E.W., “On the cruelty of really teaching computing science”. Communications of
the ACM, Vol. 32, no.12, pp. 1398-1404, 1989.

[7] Ciapessoni E., Coen-Porisini A., Crivelli E., Mandrioli D., Mirandola P., Morzenti A.,
"From formal models to formally-based methods: an industrial experience", ACM
Transactions on Software Engineering and Methodologies, Vol. 8. no 1, pp.79-113,
January 1999.

[8] Cigoli S., Leblanc P., Malaponti S., Mandrioli D., Mazzucchelli M., Morzenti A.,
Spoletini P.: “An Experiment in Applying UML2.0 to the Development of an Industrial
Critical Application”, Proceedings of the UML'03 workshop on Critical Systems
Development with UML, San Francisco, CA, October 21 2003.

[9] . Parnas D.L, “Software engineering programmes are not Computer science Programmes”,
CRL Report 361, McMaster University, Ontario, 1998.

[10] Parnas D.L.,. Heninger K,. Kallander K., Shore J., “Software Requirements for the A-7E
Aircraft”, Naval Research Laboratory, Report no. 3876, November 1978.

6 Acronyms

CE: Computer Engineering
CS: Computer Science
CSE: Computer Science and Engineering
FM: Formal Method
SE: Software engineering
TFCS: Theoretical Foundations of Computer Science
V&V: Verification and validation

	1.Preamble: The Essence of Formal Methods: What are they?
	Advertising and Promoting FMs: Yes, but …
	3.So what? �Integrating the teaching of FMs within engineering curricula
	A FM Track within CSE Curricula
	3.1.1Mathematical Background
	Remarks
	Basics of Theoretical Computer Science
	Core FMs topics
	Remarks
	Advanced FMs Topics for Specialized Applications

	On Possible FMs Tracks within non-CSE Curricula

	Conclusions
	References
	Acronyms

